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ABSTRACT

This study applies recently developed statistical algorithms and an innovative large

system scaling technique to the problem of implementing a virtual neural computer.

Once the techniques are shown to faithfully model highly nonlinear, nonequilibrium

probability distributions, they are applied to the brain.

The statistical mechanical neural computer (SMNC) developed in this thesis makes

use of scaling to effectively filter the information flow and to model its contents. The

implications for command and control are the SMNC's ability to recognize patterns of

previously stored information detecting similarities between new and old data. The

purpose of the SMNC is to serve as a decision aid that will contain high quality

information about specific nonlinear relationships related to system variables, througn the

aggregation of information into coarse-grained data at a mesoscopic level. This should

give the user, be it battlefield commander or Wall Street analyst, the ability to more

accurately forecast the most likely course of events a given scenario would follow based

on its recent history.

The SMNC is well suited for the study of stochastic processes. Its methods for the

aggregation and scaling of data make it an effective tool for the study of both short and

long term behavior in nonlinear nonequilibrium systems.
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I. INTRODUCTION

V

It's a familiar scene, whether you are a battlefield commander, a corporate

executive or a Wall Street analyst; the facts keep changing faster than your ability to

comprehend them. You and your assets are stretched to the limit as the risks involved

escalate. Your decisions are crucial to the success of your mission, reputation, or

business and time is running out. How do you best use the information you have? What

is the best decision? What path will the events likely follow? How can you use the

information you have to optimize your decisions and what influence will these decisions

have on the actions that follow? These are questions we have all asked ourselves at one

time or another. If only the crystal ball were a bit clearer or our intuition a bit better. C.

Today's computers cannot match the real-time performance of the human retina.

It is estimated that to simulate the computational powers of the human eye would take a

minimum of 100 years on a Cray supercomputer [1]. The human brain is one of nature's

most complicated works of art. Its neocortex is many-folded and more complex than the

retina. As a computer it encorporates parallelism on a scale far beyond anything man has
,

yet to devise. It is capable of complex pattern recognition, an ability that the most

modern computers can match only on the smallest of scales. Yet the brain is terribly

inefficient and easily outperformed by the smallest calculator in dealing with simple -.,

linear operations. Although the brain cannot match the speed and accuracy of a ..

computer, for some things it more than compensates for this through its ability for

abstraction and reasoning. It is the ability to recall past events that enables the brain to
a,.

respond to changing situations. This has also allowed man to learn from his environment

7
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by associating similar patterns with similar results, that is, to recognize danger in a

situation not previously experienced.

This thesis represents an effort to incorporate such "intuition" into complex

multivariate nonlinear command, control and communications (C3 ) systems requiring

stochastic or probabilistic treatment. In C 3, as in many other systems ranging from

neuroscience to nuclear physics, data rates often exceed that of human comprehension.

Current solutions include the construction of networks of many units computing

simultaneously in a manner similar to the way neurons cooperate in the nervous systems

of living organisms [2,31. Unfortunately the huge connection matrix required to account

for all interneural connections has made this approach impossible in the past and limits

its practicality in the present.

Through the use of statistical mechanical techniques to model neocortical

interactions [4], a statistical mechanical neural computer (SMNC) incorporates a

mesoscopic scaling level that enables a timely yet robust means of handling large

quantities of data. It is the existence of several scales of neocortical interactions that

suggest the use of nonlinear nonequilibrium statistical mechanics. Through coarse-

graining, the model is capable of explaining macroscopic neocortical activity while

retaining an accurate average description of the underlying microscopic synaptic activity.

This purpose of this study was to establish an ordered 2-dimensional mesoscopic

substrate upon which a macroscopic formulation of statistical firings could be developed,

and to show that through the use of a control structure at the microscopic level, the

validity of the scaling can be proven.

8
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The SMNC which this thesis proposes will provide the battlefield commander,

the logistics planner or personnel coordinator with a decision making tool for discerning

the best course of action based on uncertain, incomplete, or contradictory data through

approaches the modem computer is yet incapable of making. The code and memory

requirements to accomplish this feat are such that the program can be run on a personal

computer, in the field if necessary.

Chapter II provides the reader with an overview of current approaches to the

topic of parallel processing and neural nets, as well as further motivation for this paper.

A Statistical Mechanical Neural Computer, Chapter III, describes the algorithms and

stochastic statistical mechanics that apply to the neocortical SMNC [5]. In Chapter IV

the operation of the mesoscopic statistical mechanical neural computer is discussed and

the steps taken for the verification of the code used with the mesoscopic scale in 1-

dimension are outlined. Chapter V, the conclusion, discusses the results thus far obtained

from the SMNC and recommendation for further research and application. Appendix A

contains a partial listing of the source code for the microscopic scale as well as a

description of the associated data structures, algorithms and mathematics used to model

the brain. Appendix B contains a description of the code used for the 1-dimensional

mesoscopic computer. Appendix C discusses the Cauchy-driven Monte-Carlo methods

used for the approximation of nonlinear nonequilibrium events.

9



I. PAST AND PRESENT TECHNOLOGIES

This chapter looks at several of the early attempts to model the brain as well as

current approaches to neural networks and other methods being applied to the problems

of information flow and data analysis in large scale systems. The brain is one of nature's

most complicated systems consisting of highly specialized cells with unique structure

and purpose, yet it provides scientists an excellent example of computer architecture to

model and emulate. By modeling the neurons of the brain, scientists hope to gain the

insight and vision needed for the next generation of faster and more powerful .;L.mputers.

A. BACKGROUND: THE BRAIN

The basic operating unit of the brain is the neuron, depicted in Figure 2.1 [6]. A

typical neuron consists of a cell body, ranging from about 5 to 100 micrometers in

diameter. Emanating from the cell body is one major fiber called an axon, and a number

of fibrous branches called dendrites [7, 8]. The dendrites receive incoming signals and

send them to the cell body for integration and further propagation. The human brain

contains about 1010 neurons, each capable of sending information to and receiving

information from about 104 of its neighbors, mostly nearest-neighbors. Each neuron can

also communicate with a small fraction of other more distant neurons. Stimuli affecting

a neuron are translated into all or nothing depolarization pulses, or action potentials,

which are then propagated along the axon. Enough depolarization (10 - 20 mV) within a

period of 5-10 msec may cause the neuron to fire by generating its own electrical pulse or

10
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action potential, thereby further adding to the total intensity of the initial action

potential [9].

Current technology has enabled the modeling of the actual properties of many

biological and physiological no-l,-iear nonequilibrium systems through the application of

statistical mechanics. The physiological properties of the neural system within the brain

can be approximated through the application of a nonlinear dynamic assemblage of

quasi-random decision elements, also known as a neural network. A dynamic neural

network can be characterized by a complex pattern of variable neuron to neuron

connections, with the variability being determined stochastically [10].

Recent studies show that several levels of scaling of neocortical interactions

exist. It is the existence of these scales of interactions that suggests the use of nonlinear

nonequilibrium statistical mechanics. Through coarse-graining, a r,-thod of treating

nonlinear nonequilibrium statistical systems, a model is capable of explaining

Axon

Axon terminals

Dendntes

Figure 2.1 A Typical Neuron
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macroscopic neocortical activity while retaining an accurate description of the

underlying microscopic synaptic activity. As found in most nonlinear systems, a

mesoscopic or intermediate scale is also required to accommodate a statistical model of

the microscopic scale. The mesoscopic scale can be defined as the spatial extent of a

minicolumn. A minicolumn is comprised of clusters of about 110 neurons. A large

majority of these have interactions with their nearest neighbors (103 other minicolumns

within about I mm) and thus provide a physical context for a macroscopic region [4].

Each minicolumn has two basic types of neurons: excitatory (E) and inhibitory

(I). We assume that there are approximately 80 excitatory neurons and 30 inhibitory

neurons in a minicolumn. At any given time, each neuron within this network of

interconnected neurons is either firing or not firing. The decision whether to fire or not is

stochastically determined and depends on the strength of existing stimuli reaching the

neuron and the existing background noise induced from synaptic interactions with other

neurons. A neuron may fire anytime its threshold is exceeded. Firing is an all or nothing

neural response based on an integrate and fire at threshold scheme [11].

B. EARLY ATTEMPTS AT MODELING THE BRAIN

As early as 1943 the concept of a neural net was presented by McCullock and

Pitts [12]. They assumed the following:

- the activity of the neuron was an all or nothing process,

- a fixed number of synapses needed to be stimulated prior to neuron excitation,

- excitation was independent of previous activity,

- delays associated with the system involved only synaptic delays,

12
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- an inhibitory response exists that is capable of countering, and

- the excitation of the neuron and its entire structure is time invariant.

Rosenblatt [12] carried the ideas of McCullock and Pitts further with his

perceptron concept. The theory proposed by Rosenblatt dealt with an entire class of

brain models and introduced the term perceptron. Rosenblatt defined perceptron as a

network of sensory, association, and response units with a variable interaction matrix of

coupling coefficients for joining all pairs of sensory units relying on the sequence of past

activity states of the network. Rosenblatt sought a physical system capable of perceiving

its environment, and learning to recognize events encountered in the past. He concluded

that his perceptron model was capable of learning to duplicate the performance of any

finite task. In 1960, Rosenblatt demonstrated that a 20 X 20 network of perceptrons,

implemented in hardware, was capable of recognizing the letters of the alphabet.

The proposals of Rosenblatt were not fully accepted by others. While

codirectors of the Artificial Intelligence Group at MIT, Minsky and Papert [ 13] published

a book, Perceptrons, which was less than supportive on the topic. They concluded that

the idea of a parallel computer modeled after the brain was ahead of its time and that

much more research into this topic was needed before an accurate model could be built.

The effect this had on the field of neural computers was not favorable, and it was not

until the early 70's that interest in neural computers resumed.

C. CURRENT APPROACHES

Ongoing research and applications of our knowledge about the brain to

computers can be divided into several broad categories. One large body of research deals

with neural computers and their implementation through optical means [14-161. Yet

13
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another approach views the neural computer as a device employing parallelism on a

massive scale [17]. Some promote the virtues of a neural computer through network

theory [3, 18, 19].

1. Optical Neural Computers

Conventional computers are comprised of electronic switching units

with some small degree of interconnectivity. Processing of information is generally done

in a linear step-wise manner. The brain, on the other hand, employs a large number of

interconnected neurons, each capable of communicating simultaneously with a vast

number of its neighbors. Neural net systems model the human brain using the neuron as

the basic unit. Some neural computers are being designed to solve problems through

optical elements arranged the same as neurons are arranged in the brain. Current

applications include the one proposed by Psaltis of Cal Tech and Farhart of the

University of Pennsylvania, working for DARPA on the optical implementation of a

.1 neural network computer using an array of light emitting diodes which represent logic

units with binary states. Nonlinear feedback is achieved by the use of an optical vector

matrix multiplier and then through a threshold circuit to another array of light emitting

diodes. Each output LED assesses the state of its input and fires according to whether or

not its threshold has been exceeded [15]. Mostafa and Psaltis [15] suggest that the

anatomical structure of the brain serves as an organizational principle by which

associations can be readily established between what is stored in memory and input data.

It is their assessment that optical technology fits well with the concept of a neural

computer due to the technology's strengths, that is, a large number of interconnections

and processing elements working simultaneously on one or many problems.

14



2. Parallelism

Another approach to the problem of how to rapidly handle large

amounts of data is through the use of massive parallelism. This is much the way the

brain handles incoming sensory information and is the reason this approach is viewed by

many as neural networking. Instead of waiting for the information to be collected in

total, the brain begins processing the information as it becomes available and does so by

distributing data to various segments to co-process, or deal with in parallel. The neural

substrate of memory and learning is a question of great importance. The success of

parallelism in computing has been suggested to be related to the fact that human 'p

intelligence has evolved along the lines of massively parallel hardware [20].
V.

W. D. Hillis has designed a computer system referred to as the 'A

Connection Machine [17]. Incorporated in the Connection Machine is "data level

parallelism", which refers to a strategy in computer design that strives to fit computer

architecture to the problem by using inherent parallelism. "Data level parallelism" is

appropriate for tasks dealing with large numbers of independent data elements capable of

manipulation in parallel by multiple processors. The Connection Machine uses a

network of 65,536 individual single bit processors, each with 4096 bits of memory.

Instructions are broadcast to all the processors which execute in parallel. A massive

interconnection system, or router, connects the processors to permit any processor to

communicate with any other processor. Several applications for the Connection

Machine's architecture have been suggested including document retrieval, fluid

dynamics, and Strategic Defense Initiative (SDI) [2,17]. Key concepts include

massively parallel processing, high speed paging and cluster analysis.

15
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Other users view neural networks as a form of natural intelligence or

NI (as opposed to A). Defining AI as a Turing like software development (implemented

by Von Neuman type hardware with the noted exception of the Connection Machine),

Harold Szu of NRL, views NI as a global connection machine implemented through a

combination of algorithms and architectures for both efficient interface and

computational rates [21].

Hecht-Nielsen [3] states that an artificial neural system is the

engineering discipline concerning the design, implementation, and application of

dynamic systems capable of processing information by means of response to continuous

input. His stated goal is the creation of a man-made system that is capable of processing

information the same as the brain by allowing a network of neural units to adjust to their

environment. The properties of associative memory have been adopted by Hecht-Nielsen

Neurocomputer Corporation. This company has also released a neural network

description language language called AXON which facilitates the description of any type

of neural network architecture. Finially, there has recently been formed an International

Neural Network Society, whose purpose is to create a scientific and educational forum

for students, scientists, and engineers to learn about and advance the state of knowledge

in this field.

Other companies have also marketed parallel systems, including Intel,

INMOS, and Floating Point Systems [ 11].

3. Other Networking Concepts

Hopfield and Tank of Cal Tech [ 16] have developed a neural network

computer that was applied to the historic traveling salesman problem. Connections

16
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between the neural units served to model the distances between cities. Using 10 cities

their results were consistently among the first or second best when compared to a main

frame computer. When 30 cities were used for 1030 possible choices, the neural

computer's answers were among the best 100 million, which were all within 10-21 of

each other. This was done in less than 0.1 second which compares to over an hour on a

large dedicated main frame computer.

Hopfield and Tank [18] also propose the use of circuits of nonlinear

graded-response neural units organized into networks of symmetric synaptic connections

to prove associative learning. They apply the computational properties of biological

organisms to the field of computer design. Their goal is to model a neuron's effective

input, output and internal state, as well as the relation between its input and output. Their

model fails to take into account that associations are often asymmetric. The symmetry of

their model is not necessary to prove associative learning and memory storage by neural

like networks [15].

#.
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III. A STATISTICAL MECHANICAL NEURAL COMPUTER

ft

This chapter addresses the data structures and design decisions behind a

statistical mechanical neural computer. It also introduces some of the theory and

algorithms that enable such a system to not only model the brain, but also model Red and

Blue forces in combat, or model the hostile actions of an enemy while embedded in an

SDI satellite.

A. INTRODUCTION

Ingber [4,5,22-25] has studied the dynamics of the brain and discusses his

results in a series of papers on the statistical mechanics of neocortical interactions by

(SMNI). His conclusions serve as the initial development of the SMNC by providing a

means to test and validate data on several scales. This data can be aggregated to yield

information on a mesoscopic scale about variables such as measures of force or measures

of effectiveness. At the same time, calculations made at a microscopic level will

enhance decision making at the command, or macroscopic level. The microscopic level

was envisioned primarily as a means to validate the mesoscopic level. This was later

found to be impractical and was not fully pursued.

Parameters used and the actual functional form of the path-integral Lagrangian

are dependent on the actual system being modeled, that is, the brain and its neurons, or

combat and its associated land, sea, or air battles. Ingber has already applied the

concepts proposed here to both the combat scenario and the neocortex. The SMNC can

be fit to many specific scenarios through manipulation of key variables discussed later in

this chapter.

18 1
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B. DOMAINS

Most research into neural nets fails to address the nonequilibrium situations that

give rise to the thought process of the brain; the afferent convergence and efferent

divergence of neural impulses. To properly account for this, it is necessary to introduce

the notion of scaling, or domains. If brain organization is to be taken seriously, to adapt

to other systems, it is reasonable to expect that some properties of the real brain be

calculated by a theory.

1. The Microscopic Domain

Literature in the field of biological intelligence [5,11,21,26,27]

suggests a statistical mechanical approach to modeling the macroscopic regions of the

brain, specifically the neocortex, by statistically aggregating its microscopic regions or

neurons. Many properties of biological and physiological nonlinear nonequilibrium

systems can be modeled through the application of statistical mechanics. In the SMNC,

the physiological properties of the neural system within the brain are approximated

through the application of a nonlinear dynamic assemblage of quasi-random decision

element, characterized by a complex pattern of variable neuron to neuron connections.

A typical neuron collects signals from its environment continuously

summing them while deciding whether or not to respond based upon some threshold

limit. When describing the large collection of neurons within the neocortex, it is

postulated [5] that the brain averages the incoming inhibitory (I) and excitatory (E)

polarizations occurring at the base of the axon prior to determinating whether to fire. The

decision to fire is stochastically determined from the strength of stimuli reaching the

19
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neural site during a specific refractory period t of 5 - 10 msec. If the strength exceeds a

neuron's threshold value the neuron may fire.

The influencing factors for a neuron's firing are simulated by the

SMNC through the derivation of normal distribution functions. These functions take as

inputs known ranges of values for parameters (Vj, vjk, Ojk, Ajk, BJk, N, N*). A detailed

discussion of these parameters is given by Ingber in his papers on Statistical Mechanics

of Neocortical Interactions [4,5,22-25] and are discussed in general terms below.

Vj is used to denote a neuron's threshold potential. This is separately

determined for each micronode during program initialization routines by using a

Gaussian distribution centered about known threshold values (10 mV) for the
k

neocortex [5]. After initialization, these values are allowed to slowly change

dynamically ("plastically"). .4f

The variable vj, represents the net electrical potential observed at

receiving micronode j during an interaction with sending micronode k. *jk represents

the variance of the net electric potential and is a Gaussian distributed variate selected

from a limiting range 0.09 to 0.11. The variable v is also modeled as a Gaussian %

distributed variate with values selected from a range of ±0. 1mV. A positive value for Vik %

is taken for an excitatory response from neuron k, and a negative value for an inhibitory

response. Initial values are derived from existing literature on the brain [28].

AJk is the activity that is induced at micronode j when micronode k

fires and is a Gaussian distributed random number that is chosen between 0.001 and 0.01.

Ajk multiplied by the number of individual action potentials, vk to approximate the

threshold value Vjk. Bjk is distributed and selected similarly to A k and represents the

20
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background noise influencing micro to micro interactions. These values have been
.

derived from research by Ingber on the neocortex [5].

oj refers to a neuron's most recent firing state. aj can take on a value

of either +1 indicating the neuron has recently fired, or -I to indicate that it has not. The

probability p., that a neuron j fires is derived from an exponential function that

combines and normalizes the sum of the aforementioned inputs to neuron j. The SMNC

calculates p0 . through the generation of the above variables and then compares this value

to a random number uniformly distributed between zero and one. If p,,, exceeds the

random variate, the neuron is said to have fired, otherwise it does not fire and the process

of stimulation begins again. As with the brain, there is no situation where firing can be

assured.

The variables defined above are combined in Equation 3.1 which

expresses the probability that a given micronode will fire. The result is then compared

with a variate uniformly distributed between 0.0 and 1.0. If the value of p o, exceeds the ,,

value of this second variate, then that micronode fires.

exp(-F)(3.1)
. exp(Fj) + exp(-Fj)

where

V -(aik Vik)
Fp 2 1/2k 322)

k

and "
I
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aJk = 2 Ajk (ak + 1)+Bjk (3.3)

Although studies reveal several kinds of inter-neuronal relations, we

will be interested in only the E and I interactions which can be aggregated into a

Gaussian distribution for the interactions across the synaptic regions, and applied to

statistical mechanical modeling techniques simulating the activities of the neuron to

neuron connection. The mathematics behind the equations just discussed are depicted

graphically in Figure 3.1 [6].

2. The Mesoscopic Domain

As in most nonequilibrium systems, a mesoscopic scale is required to

permit the formulation of a statistical model for a microscopic domain. This also allows

Figure 3.1 A typical neural unit.
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the formulation of a macroscopic domain [29]. Within the brain, a physical scale exists

supporting the concept of mesoscopic regions. Ingber [5] defines a vertically oriented

collection of about 110 neurons as a minicolumn. These assemblages are found "

throughout the neocortex. Most neural interactions are short ranged, diverging through

efferent minicolumns to as many as 104 nearest neighbors.

A mesocolumn can be thought of as an afferent minicolumn receiving

inputs from approximately 104 other neurons. It is also viewed as an efferent

macrocolumn scaled down to minicolumn size to relate the convergence/divergence of

neocortical interactions. As with the brain, this permits a signal to be quickly propagated

throughout a region [22]. Incoming signals are averaged and a single response is

generated for transmission to as many as 104 other neurons.

Different cases of mesoscopic neural firings have been grouped

together for separate consideration and modeling [5]. A model of dominant inhibition

has been derived to explain the mechanisms behind the suppression of minicolumnar

firings by neighboring minicolumns. Labeled IC, this model sets values for AG, the

minicolumnar averaged conductivity between neuron G and neuron G', and BG,, the 8,.

minicolumnar averaged spontaneous background noise across the synaptic cleft between '

G and G'. The variable G is used to represent two possible classes of neurons of

interest, E and I. A represents the case for the E-I, or excitatory to inhibitory

connectivity. For the dominant inhibitory model this value is 0.01 NIN. The value

N/N represents the minicolumnar weighting factor necessary to scale the averaging

influence of 105 possible sources of stimuli in a macro region or macrocolumn, down to

the minicolumn scale of 110. N, the number of neurons in a minicolumn, is the sum of
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the NE and N1 neurons which is about 110. N*, the total number of neurons in a

macrocolumn, is the sum of N and N*( neurons, which is equal to 103N, or S

approximately W neurons. It should be noted that there are four possible interactions

(E-I, E-E, I,E, I-1). Research [25] also indicates that the average minicolumn has a

predominance of the E type neurons over the I type neurons, where NE is about 80 and

N1 approximately 30. Values for all cases discussed are included in Table 3.1 which

follows this chapter. Values from the table are for the microscopic case and need to be

scaled by a factor N *IN whenever applied to the mesoscopic scale.

In Ingber's works describing the results of stationary solutions of the

macroscopic prepoint discretized Lagrangian LG, it was noted that several minima

clustered about the origin under sensitive changes of background noise, which he called a

centering mechanism [24]. Explanations of this clustering suggest that E-I competition

at the mesoscopic scale produce a special case of the IC model, labeled IC' for dominant

inhibition centered [5]. The values for A do not change in the IC' model. However, to

account for the observed centering effect, Ingber [25] found it is necessary to change the

values used for certain cases of B, specifically the balanced centered cases labeled B 'I
where the value used is 0.0153 and B ' which equals 0.00138.

At the other end of the scale of inter-neuronal responses lies the

dominant excitation model labeled EC, which accounts for the nearest neighbor a,

excitatory influences on a minicolumn. Applying the centering concept to the EC model

give rise to what is labeled the EC' model or dominant excitation centered. This is

accomplished by changing the parameters for B and BA.
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An intermediate set of models is used to account for the situation S"

arising when the SMNC produces results in a range between excited and inhibited called

balanced, or BC, and balanced centered, or BC'. These cases can be obtained by setting

the listed values for A and B.

Through statistical manipulations of the microscopic region,

mesoscopic parameters can be derived which reflect the net effect millions of neurons

have with respect to their interconnections. This leads to the development of the

probability distribution of mesocolumnar firings P. The value of P can be approximated

from Equation 3.4

P = (2rt )- /2 g 12 exp(_NAtL ) (3.4)

where the variables are defined below.

Mesocolumnar interactions occur over the same interval t as the neural interactions.

N is the number of neurons in the mesocolumn, about 110. The mesoscopic Lagrangian

L is computed as follows:

L G = (2N)-1(G a-g G )gG,'(M'tG "gG )+M G JG/(2NC)-V G (3.5)

Note the use of the Einstein convention of summing over repeated indices. g in Equation

3.4 is the determinant of the matrix gGG'.

MG represents the number of a particular type of neuron. Recall G

may represent either an E or an I. ME represents the number of excitatory neurons in a

mesocolumn and can range from -80 to +80. M' is the number of inhibitory neurons in

the region and can take values between -30 and +30. M represents the time rate of

change in M between sampling intervals or firings. Initial values for these parameters

25
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are found by calling a random number generator. Later M is allowed to change

dynamically within the program.

g G represents the mean or first moment of the Lagrangian and g GG' is

its variance or second moment. It is calculated in Equation 3.7. From this we are able to

calculate values for four different cases: gEE, g El, gll, and gIE. It should be noted that

for the SMNC, gEt = gtE = 0 which reduces the calculation of g to a simple product

shown in Equation 3.7 [5].

g = det(gG,) (3.6)

and

g G G,)- = -'NG sech2FG (3.7)

Additionally:

g G =._-I(M G +N G tanhF G ) (3.8)

The value of FG is found using Equation 3.9.

(VG G GG'IG G GG'

(V-Y , G d' -- y-- AGV GdM

FG G' G' 2  (3.9)(K"[VG , 2± G-2- GNG'. I G /G"'\l/2
(N,(G) "ra,) j!,a G N +v-I-AG . ,

G'

where

G lG G
aG"= " " G+BG (3.10)

G

The values for aa , may be computed using the data included in Table 3.1. The other

unknown values in this equation are related to the mesoscopic domain and are as

previously discussed; 'G = V G which is approximately 0.1mV, and OG , = OG which is

also about O.lmV. The calculations behind Table 3.1 can be demonstrated from
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Equation 3.11 which solves for the synaptic background noise in the dominant inhibition

centered case labeled IC
[G _1_ G G G I1G GNE e

B"G  [VG (.A ! +1)vI-- E ] (3.11)
VENG

where both G is both E and I.

The Lagrange multipliers JG represent inputs from interactions outside

the macrocolumn. This simulates interactions between neurons across regions of the

neocortex via long-ranged axons and is used as a means of influencing the mesocolumn

through the direct input of external factors in much the same way a battlefield

commander can be influenced by events outside his immediate scope. This factor is one

deserving further investigation; however, it will not be evaluated in this thesis due to

academic time constraints. The value of JG used in all cases was zero.

V'G is a mesocolumnar weighting factor and is computed using

TG vI(PVM (3.12)
G

where p is the physical extent of the mesocolumn, or about 0.1 millimeter. V" values

are also related to nearest neighbor interactions [4].

Test values of MG (t + A t) are obtained from Cauchy distributions.

Equations 3.5 - 3.12 are then employed to obtain a test value for P, the probability of ",

firing. Next, the method of rejection is used to test for acceptance of the test value. A

pseudo random number uniformly distributed between 0 and 1 is compared to the test

value for P. Based of the this test P is either accepted for use by the SMNC, or it is
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rejected, new test values of MG are calculated by the Cauchy distribution, and a new

value for P is calculated. This procedure is repeated until an acceptable probability of

firing is found.

C. CONCLUSIONS

In the remainder of this thesis, we discuss the verification of the coding that was

undertaken to ensure its accuracy as well as its ability to solve for the nonlinear

probability distributions which describe the brain or other interesting systems. Ingber's

papers on SMNI [4,5,22,23,25] have shown that mesocolumnar interactions can be

accurately modeled using nearest-neighbor interactions. This permits accurate modeling

of the neocortex while allowing a significant reduction in the number of calculations

required for a single interaction. This feature has a significant influence over the

usefulness of the SMNC as a tool for battlefield management, scientific research, or SDI.
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TABLE 3.1

A,' BG" VALUES
ic dominant inhibition

S=0.005 E0.001

Ak = 0.01 Bt = 0.002
Af = 0.01 Bf = 0.002
Af = 0.001 B[ = 0.0002

ic" dominant inhibition centered
a'j = 0.005 B'j = 0.00138
A'E = 0.01 B'k = 0.002

a'0. 1=0.01 Bf = 0.002
A'f 0.0 0 1 B'= 0.00153

EC dominant excitation
A= 0.01 8 =0.001
Ak =0.005 Bk =0.002
AE =0.005 E =0.002
All 0.0 0 1 B 8= 0.0002

Ec' dominant excitation centered
A'f = 0.01 B'I = 0.001
A'k = 0.005 jB'k = 0.002
a'E 0.005 jB' =0.0102
A = 0.001 B'=0.00862

Bc balanced
=0.005 B = 0.001

Ak = 0.005 9k =0.002
AE = 0.005 BF = 0.002

A/ 0.001 1= 0.0002

Bc' balanced centered
A'l = 0.005 B'! = 0.000438
A'k = 0.005 B'" = 0.002
A, = 0.005 Ba' =0.0102
A'/=0.001 B'f= 0.00862
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IV. OPERATION OF THE SMNC

The SMNC, as originally conceived, is composed of two computers operating in

parallel, with the algorithms and theory of Chapter III pertaining to both. One computer

models 105 neural units and operates at the mesoscopic, or middle scale. This scale takes

advantage of the statistical mechanical shortcuts that are fundamental to this thesis and

forms the basis of Ingber's derivation of short-term memory in the neocortex [5]. The

second computer operates at the microscopic level and is a 0mulation of a fully

connected neural computer made up of approximately 550 neural units. Each of these

microscopic neural units is connected stochastically to about 10% of its neighbors. The

microscopic computer was designed to serve as the basis for microscopically sampling

the mesoscopic computer. Its purpose was to serve as a means to verify the mesoscopic

output and provide a relative measure of speed and accuracy or resolution of the

mesoscopic SMNC. Due to the size of memory required to just initialize the microscopic

scale, the time required for even one update cycle, and the limited time available for

thesis work this portion of the research was replaced by a more economical method of

verification discussed later in this chapter.

A. INTRODUCTION

At the microscopic level the computer does not operate in complete isolation. A

connectivity matrix is required to allow the individual neural units to communicate with

the the other units at the same level of scale. This immediately presents a problem;

interconnections with 105 neighbors must be simulated since a true neural computer of
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this size would require over 5.5x 106 interconnections. A connection matrix of this size

would defeat the purpose of this thesis, quickly exhausting any reasonable computer

resources. For this reason, the control portion of the project was approximated by using

only five fully connected mesoscopic units consisting of 550 individual neural units.

Even at this level of connectivity, the ability to run the microscopic neural computer at

the Naval Postgraduate School is limited by the computing resources available (VAX

11785). This necessitated the running of the microscopic scale of the SMNC on a more

powerful computer. A VAX 8800 at NASA AMES, San Jose, CA was utilized for this

purpose. Due to academic time constraints, the microscopic neural computer was run

only to initialize the connection arrays and for one update cycle. This was done to

ascertain the approximate memory requirements and running times for this portion of the

project. Results of this part of the project are mentioned in Chapter V.

The SMNC models the neocortex region of the human brain. This modeling

demonstrates the mesoscopic scaling algorithms, and highlights their utility in reducing

the computational load associated with virtual neural computers. It also shows how the

mesoscopic scale can be used to serve as an efficient filter between the microscopic and

macroscopic scales, similar to the way information is filtered as it passes through the

chain of command in a military organization.

1. The Microscopic Scale

The microscopic scale is the level at which an individual unit

communicates with its neighbors. Traditional neural net computers only consider

interactions at this level. However, in the SMNC, the determination of individual unit

firing states at the microscopic level is done in parallel with operations at the middle or
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mesoscopic scale. Calculations for the microscopic level may be carried out

independently of those for the mesoscopic level. Because of the relatively small scale of

the microscopic neural computer, its primary purpose was to sample the influence the

context of the mesoscopic scale has on the microscopic.

2. The Mesoscopic Scale

Haken [26] points out the need for a mesoscopic scale in nonequilibrium

systems to formulate the statistical mechanics of the microscopic system. This

formulation permits development of the macroscopic scale and provide a means of

filtering microscopic interactions. It also provides a channel for issuing "orders" in a C3

application. The use of mesoscopic scaling also dramatically reduces the computational

burden associated with neural computers.

B. COMPTTATIONAL EFFICIENCY

At the mesoscopic level, the SMNC makes use of several statistical techniques to

reduce the "burden of computation". First, it is at this level that the computer employs

the nearest neighbor concept to handle interactions that arise between mesoscopic

groupings. The SMNC deals with macrocolumnar averaged minicolumns which can be

viewed as having nearest neighbors. Figure 4.1 presents a generalized view of the

nearest neighbor principle and how regions of influence overlap between units. In terms

related to the neocortex, afferent minicolumns are represented by the small inner circles,

outer circles sharing a common center with an inner circle represent macrocolumnar

interactions developed by the minicolumn. The area outside the outer dark circle

represents the number of efferent macrocolumnar nearest neighbor neurons. The inner

circles represent the nearest neighbor interactions between the minicolumns. This
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produces areas where information is shared between nearest neighbors and, through

aggregation, the entire population.

The second statistical short cut is the scaling of the mesocolumns themselves. By

aggregating the microscopic units in a mesocolumn and treating them as an afferent

quantity, the SMNC is able to deal with groups of about 110 nunits as though they were

single units. Instead of sampling each microscopic unit or neuron individually within a

mesocolumn, the SMNC samples the mesocolumn, weighting its data accordingly.

These short cuts make the SMNC a practical tool for the battlefield commander to

use in forecasting the course of events which will occur in his environment. They also

provide motivation, at the research level, to run the two computers in parallel.

Figure 4.1I Nearest Neighbors. "
3.
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At the mesoscopic level, the variable of interest is the MG, which represents an

output of the SMNC. Recall that M is the firing status of the mesocolumn, the value of

which is tracked for both E and I type columns. The value of the Lagrangian L, which

is a function of MG, is also recorded for each unit change of time.

Initial values for the SMNC are of critical interest to this paper and the effects

that slight changes in the values for MG have on the running of the computer are

discussed in Chapter V. For the first run, the values of the MG are set so that 80% are at

0, 10% are at +1 and 10% at -1 as an arbitrary initialization of the system. The SMNC

tracks through time with these variables assuming stable values while the trajectories

reside in local minima. However, from time to time, the stochastic nature of the program

will accept a variable far from an equilibrium point. Should it land near another of

several existing local minima, the computer will track there until it is again forced to

another metastable region.

In calculating the values of MG, the SMNC makes use of several modified Monte

Carlo techniques (discussed in Appendix C) to arrive at acceptable values. This is due to

the interdependence of the variables and the sensitivity of the system to the initial

conditions. Recall the equations for the Lagrangian, L.

LG = G  )gGG,(M -gG')+MGjG/(2NV)-V', (4.1)

where the value of MG is derived as shown in Equation 4.2.

MG = [MG(t+At)-MG(t)At .(4.2)

The functional dependence of gG and gGG on M have been given previously (Equation

3.9). Given a value of M at time t, to arrive at M(t+At) P test is conducted using the
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Boltzmann method of rejection. A random number x, uniformly distributed on [0,1] is

generated. DL, the difference in L values between update cycles, calculated as shown in

Equation 4.3

DL = [(Ltrial (s) + Ltrial (S +1)) - (Lod (s) + Lota (s+l))]NAt (4.3)

where t = s(A t) + t0 . It can be seen that changes in MG affect the values of two L 's and

thereby the values of ,DL. If the value of the random variant, x is less than e-D, then

the new M is accepted, otherwise no change in M is said to have occurred and its old

value is retained.

Each update of the SMNC cycles through an entire micro-column, both spatially

and temporally, calculating DL and updating the values of MG for each spatial cell in

each time increment At. These runs produce a trajectory through space and time for the
of MG

values of MG as time progresses. To test the results of the SMNC, several well known

cases of non-linear systems whose solutions are known are examined. For this thesis,

Ingber [5] provided a suitable application against which to test the results of the SMNC

when applied to the neocortex case, introduced in Chapter IU. Chapter V contains a

discussion of the purpose of running the SMNC for the neocortical case. Work done

with path-integral solutions to Fokker-Planck equations [30] provides another a means of %

validating the SMNC's ability to solve truly nonlinear probability distributions.

C. VERIFICATION

The purpose of verification is to ensure correctness of the algorithms and the

concepts behind them. Verification of the SMNC required the existence of some test

against which it can be run. Testing presents several complex problems since long term
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probability distributions generally cannot be derived empirically without prior

knowledge of the answer. Wehner and Wolfer [30, 31] faced similar difficulties in their

work on path-integral solutions to Fokker-Planck equations.

They derived a numerical method, based on the path-integral formalism to solve

nonlinear Fokker-Planck equations. In solving Fokker-Planck equations dealing with

bifurcation of a stochastic process, Wehner and Wolfer used the drift function shown in

Equation 4.4.

K (q) = tanh (q- (4.4)

The Lagrangian of this function is shown in Equation 4.5

( -tanh(q ))2 (4.5)

2
with a constant diffusion coefficient equal to one.

Here, q is the difference between q(t) and q (t+At). The long term solution to Equation

4.5 is known to be

P (q,t) = [sech(qo)/(27t )112]exp(-t/2)exp[(-1/2t )(q -q 0)2]cosh(q) (4.6)

S:.

where q0 = 0. A plot of this function at t = 10.0 is shown below in Figure 4.2 and can be -,

seen to be the superposition of two Gaussian distributions with no nonzero steady state. .-

The purpose of the above was to introduce a Lagrangian which can be employed

by the SMNC in an attempt to reproduce a known result, and to replace the time and

memory intensive microscopic neural computer as the primary means of verification.

The method of Monte Carlo integrations over the configuration space was proposed by

Metropolis, et al [32] over 34 years ago as an approach to this problem. More recently,

36



S,

in%

011

AA "P°

• .4

J_.

-30.0 -2O. -too 00 too 20.0 30.0

Figure 4.2 Graph of Equation 4.6 at time = 10 !-

Landau [331 has applied Monte Carlo techniques to statistical mechanics. Landau states,

that to do a Monte Carlo simulation of a path-integral solution to a Fokker-Planck .

equation it is only necessary to be able to generate enough states according to the ',

Boltzmann distribution to compute the propertes which appear. The Boltzmann

probability distribution can be written as

P =(27rAt/g)-112e-LAt  e e - L AI - 1/21n(2r /g )  (4.7)

where g is found from the following relationship.

g =det(g G ) 48

This is the approach taken by the SMNC to initialize its trajectories.

A modified Monte Carlo procedure which is driven by a Cauchy random number

generator is employed where an "unlikely" first guess at the trajectory is made through
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the use of a uniform random number generator. The values of this starting trajectory are

then updated by generating random values with a Cauchy random number generator, and

then using the Boltzmann distribution to test and accept or reject each new point as the

trajectory changes. The Boltzmann test will ensure that the resulting distribution stays in

the range of "likely" results. The use of a Cauchy random number generator allows for

occasional testing of new space and thus for the possibilities of finding new local

minima.

The entire trajectory is updated in this manner, say 1000 times, until the final

product is free of transient variations. This resulting trajectory is now considered a

"likely" distribution and is used as the actual initial starting condition for the SMNC. A

more detailed description of this procedure is given in Appendix C.

The SMNC is run with Equation 3.5 replaced by Wehner and Wolfer's function.

Using the Boltzmann test to arrive at a likely initialization point, Figure 4.3 was

generated by the SMNC for the variable q over the same time interval as Figure 4.2. The

results agree.

As a further check using the bifurcation test case, the initial condition, q0 , is set

equal to 0.6. With elapsed time and time step the same as with the run which produced

Figure 4.2, Wehner and Wolfer obtained a different set of results which are shown in

Figure 4.4. The initial condition can be seen to have a great effect on the resulting

probability distribution which is noted when the results obtained from the SMNC when

applied to the same problem. Figure 4.5 was produced by the SMNC in solving the same

problem. When the methods of computing the results are compared, it becomes

significant that the SMNC is capable of such results in such a short amount of time.
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Figure 4.3 Plot of the SMNC's output for Equation 4.6.

(b)

-50.0 -20.0 -100 00 too 200 3 0

qq

Figure 4.4 Wehner and Wolfer's solution to Equation 4.4 with q 0.6.
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Figure 4.5 The SMNC solution to Equation 4.4 with q0 = 0.6.

As a final test of the SMNC's ability to solve single-variable nonlinear probability

distributions, an additional system, the Rayleigh gas model, was modeled for the

verification process. The Rayleigh gas model consists of a dilute concentration of heavy

atoms in a gas of lighter atoms. Treating these atoms as hard spheres, the Boltzmann

equation for the ensuing collisions can be written as a Fokker-Planck equation. The drift

function for this system is listed in Equation 4.9.

K =-q + 1.5 (4.9)

The system diffusion function is:

-=2q (4.10)

In this model, the Fokker-Planck equation is valid only for values of q greater than zero
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since the energy of the gas particles can be only positive. The resulting energy

distribution P(q,t) for the heavy particles, is given by Equation 4.11.

P (q t) = 2[rq0(l e_,)11/2 [exp[l--exp[2] (4.11)

The values of exp [1] and exp [21 found from Equations 4.12 and 4.13.

[q -(qoe -
exp[1] =exp -e (4.12)

[ +( e - )

exp[2] =exp [ 1-e T  (4.13)

Figures 4.6 and 4.7 are for the short term probability distributions for the

Rayleigh gas system. Wehner and Wolfer's solution to the Rayleigh gas system using
'p

the same initial condition (q0 =7) is shown in Figure 4.6. The SMNC was applied to the

same problem with the results shown in Figure 4.7.

The long term probability distributions for the Rayleigh gas system are shown in

Figures 4.8 and 4.9. Figure 4.8 is Wehner and Wolfer's solution for the system at time

equal 10 minutes and same initial condition. The SMNC was applied to the Rayleigh gas

system and produced the results seen in Figure 4.9 The similarities between these sets of

figures and for those of the bifurcation cases in Figures 4.3 and 4.4 are taken as proof that

the SMNC is capable of predicting the long term behavior of truly nonlinear probability
a,

distributions. Also of significance is the time and memory required to produce

meaningful results. The methods of Wehner and Wolfer produce exact results and are

fast. However, the computer resources required are far greater than those available to the

battlefield commander. Their computations were made using a Cray super computer and
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Figure 4.6 Rayleigh gas at time equals 0.5. '
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required run times on the order of minutes. On the other hand, the SMNC derived a

solution that was close in each case tested to those derived through more exhaustive

methods of Wehner and Wolfer. Run times for the SMNC were longer, but also on the

order of minutes. Any loss in resolution is a cost associated with the computational

methods used. The source code used to produce the single variable case graphs shown of

Figures 4.3 and 4.5, can be found in Appendix B. The user must decide whether or not a

quick near fit is acceptable or the longer exact solution required.
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V. CONCLUSIONS

Questions that may arise when discussing the SMNC should include the

following:

- How much does the mesoscopic computer suffer from loss of resolution?

- Do the computational savings achieved by the mesoscopic computer compensate

for any attendant loss of resolution?

- How closely does the mesoscopic computer correlate with the microscopic

computer?

- How well does the mesoscopic computer filter data?

4 - How much can the SMNC learn?

- How robust is the SMNC?

Furthermore, now that the efficacy of the principles behind the SMNC has been

demonstrated, additional research is required to build a real-time computer using state-

of-the-art parallel processing techniques. Naturally, once a hardware implementation of

the SMNC is available, other researchers may bring the SMNC capabilities to bear on C3

problems in large-scale systems and data fusion, such as radar, sonar and electronic

signals processing, missile guidance systems, and perhaps help in the development of an

integrated battle management system.

A. INTRODUCTION

Work on the SMNC is just beginning, rather than coming to a conclusion. The

groundwork laid by this thesis, and the many questions it and a related thesis by J.
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Connell raise should provide the basis for further work in the area of neural computers.

The increasing interest shown in the fields of neural computers has already lead to new

break-throughs in architectural design of neural computer chips [341, the development of

programming languages specifically designed for neural computers (Hecht-Neilsen

Neurocomputer Corporation's AXON) and, the formation of the International Neural

Network Society. In a paper presented at the National Defense University [35]

considerable interest was generated in the SMNC and its ability to to deal with nonlinear

probability distributions. This chapter seeks to answer some of its own questions,

leaving several unanswered for others interested in the statistical mechanical approach to

neural computers to solve.

B. SUMMATION OF RESULTS

The code required to run the mesoscopic SMNC (less than 300 lines in the C

programming language) places it in the small program category. A skilled C

programmer no doubt could further reduce this with a probable improvement in run time

efficiency. However, the SMNC is an effective device for the preliminary study of

nonlinear nonequilibrium probability distributions providing good results for the 1-

dimensional cases and somewhat cruder results for 2-dimensional cases. Conventional

procedures for conducting similar calculations typically employ programs of much

greater sophistication and require much more CPU resources to produce results. As

written, the code for the SMNC easily runs on a personal computer. With the proper

Lagrangian, almost any scenario could be modeled.

An important factor in the calculations is the skill with which Lagrangians are

derived and the accuracy of the data from which they are calculated. A limiting factor in
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the resolution is the complexity of the Lagrangians and the amount of "crunching" the

user has to devote to obtaining a solution. Therefore, when the question about

computational savings is posed, the answer must consider the resources available, both in

time and computing power. The battlefield commander may not be able to wait several

hours for the best fit to his information. However, a solution which contains high quality

data may be obtained in a matter of minutes with some acceptable loss of resolution.

The running of the microscopic computer for the purpose of comparing results

with those obtained by the mesoscopic computer was not accomplished largely due to

time constraints imposed by the magnitude of this procedure. The stated purpose of the

microscopic computer was to validate the output of the mesoscopic computer. The

Wehner and Wolfer solutions to the Fokker-Planck equations discussed in Chapter IV

have enabled the validation of the code but not the use of the mesoscopic scale for the

neocortical case. This, perhaps, would make an interesting thesis on its own. The

neocortical case has also been programmed in the mesoscopic form by Professor Ingber

in his efforts to confirm the validity of the SMNC. The results obtained thus far support

the SMNC concept as a valid approach to the study of the neocortex and similar

nonlinear systems. Z

The microscopic computer, described in Chapter III and Appendix A, was run

once with the cooperation of the NASA AMES research facility in San Jose, CA. The

results of this test run served only to confirm the magnitude of the computational burden

required just to simulate five fully connected neural units. Running on a VAX 8800, a

super computer capable of over 12 million floating point operations per second (flops),

the microscopic neural computer of the SMNC required nearly 3 hours of devoted
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computer time to initialize the connection arrays and execute one update cycle. For

comparison, the mesoscopic computer run on the Naval Postgraduate School's VAX

11/785 (capable of 2 million flops) was able to initialize and update 100,000 times in the
wm

same length of time. The amount of memory required to store the connection array data

was of similar proportions (over 2 giga bytes), further necessitating the assistance of a

super computer. Of particular interest is the resolution that might be obtained from a

program running at this scale.

Of equal interest is how closely does the microscopic scale model the human

neocortex. Professor Paul Nunez, of the Biomedical Engineering Department at Tulane

University, is currently pursuing this topic in collaboration with Professor Lester Ingber

of the Naval Postgraduate School. Their goal is to better understand the nature of the

neocortex and its roll in human recall.

When discussing how data is handled by the SMNC it should be noted that

information is filtered in several ways. First, the use of a Cauchy distribution in

conjunction with the Boltzmann test allows for wide variations in the accuracy of the

data being analyzed by the SMNC. The Boltzmann test serves to dampen any

oscillations away from the more likely trajectories while the Cauchy distribution permits

sampling to continue at points that are not always within local minima. This effectively

filters out data that does not fit the most likely trajectories while at the same time

allowing the computer to look for other possible minima.

Losses in output resolution are related to two major sources. The coarse-

resolution graphs from Chapter IV were developed using self-generated graphing

48



on a digitalTm model LP14-DA line printer. The resolution was of sufficient quality to

reproduce the characteristic bifurcation case, Figure 4.3, and gave very good results

when applied to the Rayleigh gas system, Figures 4.5 and 4.7. For better resolution,

graphics quality printers and routines must be employed. Computational resolution, in

contrast to graphical resolution, is directly related to the number of update cycles, or

time, available to the user for the development of stable trajectories. In the simple cases

discussed in Chapter IV, running times were short enough to not be a factor. For more

complex systems, such as the neocortex, the amount of time required for the system to

stablize is much larger and results are more dependent on the number of trajectories

tracked. When applying the SMNC to a system, the number of trajectories needed to

satisfactorily produce results is one of the variables which will need to be determined

prior to applying it to unknown tasks. For the single dimension case, between 10,000

and 50,000 trajectories were generated in reproducing the results of Wolfer and Wehner. P
I,

In answering the question, How much can the SMNC learn?, one must first show
p

that the SMNC can learn. How much then becomes a matter for those interested in p

following the work completed so far. Learning is contained within the Lagrangians,

fitted to specific systems by other procedures. Recall the equations from Chapter IV for

the value of L:

LG = (2N)-l(M G _ g )gG,(, G'_g ')+MG j/(2N,)_V , ' (5.1)

where the value of MG is derived

UG
MG = [MG (t+At)-MG ()At . (5.2)

and for the value of DL:

digital is a trademark of Digital Equipment Corporation
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DL = [(Ltia (s) + Ltida (s + l)) - (Lold (s) + Lot (s + ))] (5.3)

In arriving at each value of DL, the SMNC must find an acceptable values for the next

time step (via the Boltzmann-Cauchy procedure discussed in Chapter IV) using both

previous (Lo0 t ) and projected (Lf.ia) values of L. The information contained in the old

and new values of the Lagrangian provide the system with the means to use past data to

influence future choices. The combination of past trajectories and the Boltzmann test for

further trajectories ensures the system retains enough influence of the past to aid in

decisions it makes about the future.

Robustness was not of primary concern during the development and testing of the

SMNC. It is of concern to the battlefield commander applying it to a tactical decision in

the field. Unfortunately no tests were conducted which addressed the robustness of the

SMNC; however, as with the brain, the division of the decision-making elements into a

vast number of interconnected and cooperating elements is estimated to result in a system

that would be quite robust. This should be a topic of interest to those doing further

research into neural-like processors.

C. VARIATION OF PARAMETERS

The effects several key parameters have on the outcome of the mesoscopic

SMNC deserve mention. During the verification phase, several factors were adjusted

with the affects on the firing distributions carefully noted. Those factors affecting the

results were the temperature (variance used in the Cauchy routines), the number of

trajectories plotted, the resolution, and the length of the warmup period used.

As mentioned before, the Boltzmann test uses a Cauchy distribution to sample

points for possible new trajectories. The temperature sent to the Cauchy routine
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determines the range of values the function returns. The larger the temperature, the

wider the spread in values returned by the Cauchy routine. The Boltzmann test then

checks the returned value for reasonableness of fit. The more a value deviates from the

past set of trajectories, the more likely the Boltzmann test is to reject it. Therefore, a

higher temperature will test points which fall away from the norm and result in a higher

rejection rate. This is the best way to search for multiple minima when dealing with

nonlinear probability distributions. The temperature should be large enough to sample

the entire space a function is likely to be valid for.

A trajectory represents a possible path for a function over some discrete time

interval. The function's value at the end of the time interval is the information we seek

to learn about (for example the firing status of a neuron) and represents an output value

for the SMNC. In using a Cauchy-driven Monte-Carlo method to generate each

trajectory, the SMNC builds a set of trajectories which, in time, approach the long- term

solution to the probability distribution it models. This is most easily seen from the

figures in Chapter IV where the results presented represent an aggregation of between

50,000 and 100,000 trajectories. During the verification phase of this project, it was seen

that the resolution was proportional to the number of terms (trajectories) aggregated,

which in turn is determined by the limits of the output device.

In this context, the term resolution is used in conjunction with the display of data.

The code written for the single-variable case included variables for the scaling of the

output. The scale selected affected the results as would be expected. It was found that

acceptable results could be obtained with a resolution chosen to use all the space on a 10
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by 12 inch printout. This factor will not be discussed further since it is obviously

dependent on the hardware being used.

The length of a warmup period is related to the number of trajectories used to

generate results. During a warmup cycle, trajectories are generated with the resulting

end points ignored until the completion of the warmup time. This method allows the

system to generate enough trajectories to remove any initial bias caused by the randomly

selected starting points and nonstable trajectories which follow. It was found, through

the variation of this parameter, that 1000 was the minimum acceptable number of

warmup cycles for the one-dimensional test problems.

D. CLOSING COMMENTS

The usefulness of the SMNC as a research tool is not yet fully understood. Its

resolution is very coarse, although, in some cases sufficient to provide a researcher with

an estimate of what some nonlinear function may look like during some point in time.

This alone makes the SMNC a valuable research tool since in many cases in nature, such

an estimate is beyond the reach of a simple program.

Appendix B contains the Cauchy-driven Monte-Carlo code for a one-variable

Lagrangian. The coding and ideas presented in this paper, however, have already been

applied to modeling combat Lagrangians as well as verifying the neocortex calculations.

This required the development of a multi-variable Cauchy-driven Monte-Carlo code for

nonlinear multivariate problems. Professor Ingber is currently applying these concepts to

model both the neocortex and Janus simulated combat data. Initial results indicate the

SMNC is capable of reproducing the results obtained from more exhaustive methods

applied to the same systems.
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As a final note, the trend in the military towards the dependence upon computer

combat simulations has come under increasing criticism for several important reasons,

among which are: the lack of real world data; the shrinkage of the time scales used in

scenario evaluation; the increasing speed of evolution in real world tactics and logistics;

and the increasing cost of computer simulations themselves. For all of these reasons, the

requirement to improve the state of computer simulation becomes obvious. It can be

argued that the code presented here, and developed further by Professor Ingber, provide a

means of validating simulation data which is increasingly relied upon to help fill the

demands of an ever changing world.
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APPENDIX A: SOURCE CODE FOR THE NEOCORTICAL SMNC

Appendix A contains descriptions for some of the code for the microscopic

SMNC (neocortical case) broken down into three major subsections: 1) the declaration of

constants, variables, and the stochastic and memory allocation routines; 2) the

initialization procedures for the data structures used; and 3) the update routines. Figures

A. 1 through A. 14, at the end of this appendix, contain partial listings of the source code

for the microscopic scale. As would be expected, the listing for this version of the

SMNC is much longer than the version used to implement the mesoscopic systtwn (for

which source code is included with Appendix B). A discussion of each of the major code

sections is contained within this appendix.

1. THE MISCELLANEOUS MODULE

The miscellaneous module of the SMNC contains declarations for all variables,

constants, and data structures used to model the brain. Code for memory allocation is

also included in this module. Initialization of variables for the SMNC is accomplished by

the miscellaneous module. Variables controlling such things as length of the time slice,

initialization of most recent firing status, numbers of excitatory and inhibitory n-units,

etc., are all contained here.

In the discussion of statistical models, the user is required to first specify the class

and characteristics of the underlying probability distributions being used. This must also

include the space of the possible outcomes for the data being used. For this reason a

brief discussion of the random number routines is also included in this section with code

for several of the random number routines shown in Figure A. 1.
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a. Data Structures and the SMNC

The SMNC seeks to reproduce the workings of the human neocortex as

closely as possible, hence the use of the term neural computer to describe the class of

system created. To achieve this, several key data structures have been developed to

perform the operations that transform randomness into meaning. A listing for the code

for these structures may be found on Figure A.2. The data structures which model the

neuron and associated clusters or mini columns are called nunits for the neuron case and

microcolumns for the minicolumn case. Associated with both these entities is a data

structure called a microconnect, which holds the information about connectivities

between nunits or microcolumns and strengths of such connections.

The nunit has data fields which hold information about its class (recall that a

neuron can be either excitatory or inhibitory). The nunit also stores information about

its firing threshold and most recent firing history. There is also a data structure within the

n_unit which holds information about connections to other nunits called the

microconnect.

The micro_connect contains data which ultimately determines the firing rate

for an nunit. This includes the connectivity data discussed in Chapter 3; A k , Bjk, vjk,

and Pjk. There is also a pointer to the next microconnect in a "chain" of connections

that makes up the microscopic neural computer.

The microcolumn models the mesoscopic scale of the brain. It contains

several other data structures as well as fields for the many variables used in computing

the Lagrangian L as shown in Equation 3.5. The microcolumn also contains a "typical"

neuron for both E and I classes. Recall one of the major reasons behind the SMNC's
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mesoscopic scale is the savings in computation realized when dealing with a weighted

" typical" n-unit as opposed to dealing with 1089 individual nunits.

b. Random Number Routines

In the generation of random numbers, the SMNC calls upon one of two

pseudo random number generators to produce either a floating-point number or an

integer. These routines modify two system-supplied macros, rand and srand, to create an

'., array of random numbers that can be used and updated when needed.

The characteristic that distinguishes most distributions is the behavior of

their tails. In this respect, the uniform distribution puts none of its outcomes outside two

standard deviations. A Cauchy distribution puts between 25% and 30% of its outcomes

beyond +/- two standard deviations and a Gaussian distribution will put about 4% of its

outcomes beyond two standard deviations.

A uniform distribution places equal probability of an event occurring

anywhere within a specified interval. On a given interval, [0,1] for example, divided into

many equal parts, there is an equal probability, 1 divided by the number of subdivisions,

that any particular partion will contain the event of interest. In the SMNC, uniform

distributions are employed in the selection of most likely events where all the outcomes

are equally likely to occur, such as during the initialization of a unit's firing status.

When the characteristic being modeled is actually a combination of linear

events such that each event carries a small weight with respect to the total process, then a

Gaussian distribution is the appropriate choice. The SMNC employs a Gaussian random

number generator in the initialization routines for certain variables. The initial value

found in the declaration module is sent to a Gaussian routine which returns a Gaussian
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variant centered about this initial value. Inputs to a Gaussian distribution generator

include estimates for the mean and variance for the property being modeled.

The Cauchy distribution is a symmetric stable distribution with a

theoretically infinite tail; that is, it is possible to expect some "reasonable" number of

values to occur at arbitrarily large distances from the mean. The SMNC uses a Cauchy

distribution when an extreme spread of values are required. In the SMNC, a Cauchy

distribution is used in conjunction with the method of rejection whereby values returned

by a Cauchy distribution are then further tested against a uniform distribution. If the

Cauchy value falls within the uniform value it will be accepted, otherwise the SMNC

returns to the Cauchy routine for another candidate for use.

In addition to the declaration of all constants and variables, the following'
.J.

segments of code contain the random number and probability distribution functions

which are used by the SMNC. The code is written in the C programming language and I

was implemented on a VAX 11/785 at the Naval Postgraduate School.

2. THE INITIALIZATION MODULE

The initialization module contains the code for the initialization of all of the data

structures of the SMNC. This is shown in Figures A.3 through A.5. Each data structure

exists to represent a physical section of the brain. This is segregation according to the

level of scale being simulated. The data structure which models the minicolumn is the

microcolumn and its associated initialization subroutine is initmicrocolumno.

Init-typical() is used to establish a "representative" neuron of each class (E or I) inside

each minicolumn. Finially, initnunits0 is the subroutine used by the SMNC to model

the individual unit or neuron. All three of these modules use memory allocation routines
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to set aside sufficient space in memory to hold one of these data structures. Since

communication must take place between the various "units", these data structures are

globally declared.

a. The Mesoscopic Scale

Initialization of the mesoscopic data structures consists of two main

subroutines: inittypical() and initmicrocolumno. Most of the CPU time used by these

modules is spent establishing the "identity" of the individual components and the

connectivity that exists between them. Initial values for the variables used by the

equations in Chapter 3 are determined through the use of a Gaussian generator which

takes as inputs the initial values from the declarations module, and returns a Gaussian

variant. Those few selected microcolumns which will serve as fully developed neural

computers are designated separately and memory for their variables is set aside to be

later filled in by init.nunito.

The microcolumns which are not chosen to be fully developed neural

networks are given memory for the "typical" nunits which will be initialized by the

subroutine inittypical() which is shown in Figure A.6. This procedure also uses a

Gaussian distribution about preselected values to assign weighted values for the

parameters of the mesoscopic structure.

b. The Microscopic Scale

In the SMNC five microcolumns are used as fully representative neural

computers. Initnunitso, shown in Figures A.7, A.8 and A.9, handles the initialization of

the five special microcolumns. The "chosen five" are connected to all the typical

n-units (both E and I), as well as to approximately 10% of their neighbors. With the
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previous routines, a Gaussian procedure for selecting initial values of parameters is also

employed. The subroutine which handles this scale is called initmicrocolumno. It is

the magnitude of interconnectivity and the amount of data associated with each

connection that greatly increases the running time and memory requirement of the

SMNC. For this reason, the two computers do not usually run simultaneously on the

VAX 11/785. To test the initialization of the of the microscopic level, the SMNC was

run on a VAX 8800 with the results discussed briefly in Chapter V. .5-.

3. THE UPDATE MODULE

The SMNC can be viewed as two separate computers running simultaneously.

The microscopic neural computer runs independent of the mesoscopic neural computer.

Microupdate0 handles the update cycle for the five fully-developed microcolumns. N

Likewise, meso-updateo deals strictly with updating the mesocolumn. Each module

therefore can be viewed as an independent program. After initialization has been

completed, the program cycles through the data structures updating the firing status of the

units, microscopic or mesoscopic.

a. The Microscopic Update Cycle

In the microscopic SMNC each nunit "feels" the influence of every other

n_unit within the system. This is accomplished through the use of several structures, each

containing pointers to the other structures and exhaustive loops which test every nunit.

The requirement for each unit to know not only its own identity, or address, but also the

address of all its neighbors leads to a major resource sink within this portion of the

program. Further adding to the demands for memory and CPU time are the values for the

variables needed to compute the firing status of each nunit after each update cycle.
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Assuming 1089 minicolumns, each having 110 n-units or neurons (equal to an area of

approximately 1mm square in the neocortex) requiring some 20 variables (floats and

integers), the growth of the required memory for initialization alone can be easily seen.

This is also the major reason for the use of a "typical" neuron to represent an excitatory

and inhibitory neuron in the minicolumns which are not truly represented. During an

update cycle, each of the nunits samples every other nunit during the process of

determining whether or not to fire. This requires the calculation of the variables from

Chapter III for each connection. which is a time consuming process. The microscopic

update updates the "typical" n-units with weighted values for the variables from Chapter

III. Figures A.10 through A.14 contain excerpts of code for the microscopic update

routine, micro-updateo.

b. The Mesoscopic Update Cycle

In the mesocsopic update routine, each minicoiumn has its excitatory and

inhibitory nunits updated by the use of a Cauchy generator which employs the

Boltzmann test for acceptance or rejection of possible updated values. Values for the

variables of Equation 3.5 (or 4.2) are obtained in the same manner as with the

microscopic scale. The result of the update cycle is a plot of the firing status of the

mesoscopic scale over time. Figures A.13 and A.14 contain a listing for the subroutine

get_LO which returns the value of the Lagrangian used in the mesoscopic update routine

of the meso scale which coexists within the microscopic SMNC . This is included to

permit the reader to make a comparison with the same routine for the mesoscopic SMNC

described in Chapter IV and shown in Figure B.3.
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float get..yandfo

static iiiilag

static float fLinSHUFFLE];
unsigned inti;
int __U-dA,

if (flag 0)

srand(SEED);
for (0 = 0; i < 512; i ++)

randO;
for (i = 0; i < SHUFFLE; i++)

f-bin(i] = (float) randO / NTMAx;
flag=1

ran dex =rando % SHUFFLE;
f-bin(ran-dex] = (float) randO / ITMAX.
return(f..bin[ran~dexD);

float gauss(mu, vare)
float mu, vare;

double x. sqrtO;
float get rndO
mu *=100; p

do '

x Mu +(st((-2 sqrt(1.00 %re) I

log(.get-andfo)))) *sin(2 *PI gec...randfo);
while(x <= 0.0);
return ((float)x / 100);

float uniform(low bound, hi boud
float low_bound, hibound;

return(lowbound + (hibound - low-bound) *getrandfO);

int cauchy(median, range)
int median, int range;

float getrandfo x;,
return((int)(range tan(PI'(getrandfo - 0.5)) + median)); .

I-igure A.1I
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init-microcolumno

unsigned int, i, j;
float temp...A, temp3., gausso, uniformO;
struct n-unit *uitai~oco*
struct micro.Soluinn *colIunn allocO, *mc; S
mes-pntr[O] = column-aocO;
for(i =0; i < MESOSIZE; i++)

mc = mes..pnrf il;
if(i <= MIESOROW -.1)

mc->north = mes-jpntr[MIESORQW *(MESOROW -1) + i]

if(i - MESOROW - 1)
mc->east = mespntr[O];

else if(i = MESOROW -2)
mc->east = mes..pnir[Ol ->west;

else
mespri +1=m->east = column-allacO;

mes.Jroi + MESOROW] = mc->south =columnaoco;

if(i != 0)
mc->west =mes-pntr i- I];

else
mc->west =mes-pntrf(MESOROW - 11= column-allocO;

else if(i < MESOSIZE - MESOROW)%

mc->nornh m mes..pntr[1 - MIESOROWI %
if(i % MESOROW = 0)

mc->west = mes..pntrti- I]->south;
else

mc->west = mes..pntr~i - 1];
if(i % MESOROW = MESOROW -1)

mc->east - mes-pntr~i - MESOROW +I];

else m->east = mes.pntrlli - MESOROW + 1] ->south;

if (i <MESOSE -2 *MESOROW)
mes4,ntr(i + MESOROWI mc->south =column_allocO;

else
mc->south =mes..pncrfi-(MESQSIZE-2*MESOROW)] ->north;

else

Figure A.2
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II

unsigned in , j;

float temp_.A, temp-B, gaussO.' uniformO;
struct n-unit *uniallocO;
struct micro_column *colwrnn..ailoco, *mc;
mespntr[OI = column-allocO;
for(i =0; i < MESOSIZE; i+.+)

mc = mes...pntr~iI;
if(i <= MESOROW -1)

mnc->norili = mes..pntr[MSOROW *(MESOROW -1) + =l

column-alocO;
if(i = MESOROW - 1)

mc-'>east = mes-pntrOI;
ele f~ = MSOROW -2)

Inc->east = mes..pntr(O] ->west;

else p
,fle54ntrfi + 11 = wc->east = column-allocO;

mespntr(i + NMSOROWI mc->south = colunn-locO;
if(i !=0)

mc->west - MeS-rntr[1-1I;
else m-Ws e alcZ

mc-wes = es.pntr(NMESOROW - I11= column..loO

else ifQi < m[ESOSIZE - MESOROW)

mc->north = mes-jpnri - MESORO WI;
if(i % MESOROW ==0)

mc->west = mes..pntr~i.1]->south;
elseSORIW

mc->west - mes.Jpntr~i - 11;
if(i% OsW= MESOROW .1)

mc->east = Mes...pnzrfz - NMSOROW +1U;
else

mc->east = mes~pnfli - MESOROW + 11 ->~south; 7

if (i < MESOSIZE -2*- MESOROW)
mes..pntr[i + MESOROW1 = mc->south =column alloco;

else
mc->south =mes..pntr~i4NfMESOSLZE-2*MESOROW)I ->north;

else

Figure A.3
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mc->north = mes...pntrfi - MESOROW];
if(i % MESOROW = 0)

mc->west = mes4pntri - I]->south;
else

mc->west = mes..pntfi - I],
mc->south = mes.Jntrfi - MESOROW *(MESOROW -1)];
if(i < MESOSIZE - 1)

mc->east = mes..pntr~i + I];
else

mc->east = mes-pntr(i - MIESOROW +I1];

mc->MsupEIOJ = init -varso;
mc->Msupl(0] = inik-varso;
mc->N...E =init..params(NESIZE);

mc->NI init-.paramns(NISE);
mc->VE =gauss(VMEAN, SVAR VMEAN);
mc->VI gauss(VMEAN. SVAR *VMEAN);

mc->C..E umiforr(O. 15,0.25);
9mc->CJ = uniform(0. 15, 0.25);

mc->L[01 = 0;
mc->A_EE = gauss(I0.0, SVAR * 10.0);
mc->AU = guss(0. 1, SVAR *0. 1);
mc->A..EI =gauss(5.0, SVAR *5.0);

mc->A..IE =gauss(5.0, SVAR *5.0);

mc>h' asspiEN VA hN W

5, mc->phi..E gauss(phiMEAN, SVAR * phiMEAN);

mc->v.E =gauss(vMEAN, SVAR * MA)
mc->vI =- gams(vMEAN, SVAR *vMN),W
mc->B_EE = ((mc->V..E - (0.5 *mc->A..EI + 2.0)

* mc->v_l * mc->NJ) - (0.5 * mc->AEE *mc->vE

* mc->N_E)) / (mfc->vE * c> E)
* if(mc->B_ETE <= 0.0)

mc->B..,EE =1.-
* ~mc->BEl = ((mc->V..E - (0.5 * mc->A...EE +4 1.0) *

mc->vE * mc->N E) - (0.5 * mc->A El * mc->vI
*mc->N) (mc->vIl mc->ND-;

else

Figure A.4
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mc->B...I = 2.0;
mc->BJIE = ((mc->V-J - (0.5 * mc->AII + 0.2) *

mfc->vjl mc->NI) - (0.5 * mc->AIE * mc->v-.E
*mrc->N..E)) / (rnc->VE * c> E;

if~nc->BLE <-- 0.0)

mc->B-JE =2.0;

mc->BJI = ((mc->VJI - (0.5 *mc->A-JE + 2.0)
mc->vE * mc-:.N-.E) - (0.5 * mc->AII mc->VI
*mc->NJ)) / (mc->vjl * mc->N_1)'

else
mnc->BJI = 0.2;

mc->a.EE =. 5* mc->A -EE +i mnc->B...E;
mc->a~iI = .5 mc->AJI + mnc->BJI;
mc->a-.EI = .5 *mc->AEI + mc->BEl;
mc->ajBE = .5 mc->A..IE + mc->BLE;
mc->.d-.flag = -1;
mc->mp = NIL;
mc->EtypicaLclass - 1;
mc->EtypicaI.statust0I = MESOSTART;
mC->Etypical.status(l] = MESOSTART;
mc->EtypicaLfhreh =gauss(VMEAN, VAR *VMEAN) /1000;,
mc->ftyicai.class= 1
mc->IcypicalstatuslOl = MCESOSTART;
mc->ltypical.status(l] = MESOSTART;
mc->Itypical.thresh = gaus(VMEAN, VAR *VNMAN) /1000;
switch(i)

case 515:
mc->id .flag =0-
matmx.nunEO] = m-NE
matrix.numl[OJ = mc->NJI;
matrix.tINO] = mc->NE + mc->N-J;

UmathiiOO] -uniLalloc(mai.totaNO]);

break;

Figure A.5
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inittypicalo
funsigned int i, j; .

struct micro_connect *mee, *mei, *mii *,mie, *connect allocO; b
struct micro column -mc;
float gaussO;
for (i =0; i < MESOSIZE; i ++)

mc = mesprntrf ii;
mes-pntrfi]->Etypica.path =mee =connect-alocO;

mes-pntri->typica.path mui = connect_aLlocO;
for j =0; j < MIESOSIE; j-9-4)

(mee->next =connect alloco; mii->next =connect-allocO;

mee->hoame =mui->home = j;
mee->horneid = 1; mii->homeid = -2;
mee->phi-A = gauss(phiMEAN, VAR * phiMEAN);
mii->phijk = gauss(phiMEAN, VAR * philMAN);
mee->v-jk =gauss(vME-AN, mee->phijk);
mii->vjk I * gauss(vMBEAN, mii->phi-jk);
mee->A~ak = gauss(mc->A..EE /1000, VAR *mc->AEE /1000);
mee->Bjk = gauss(mc->B..EE /1000, VAR *mc->BEE/ 1000);
mee->A.jk = gauss(mc->A_-11/1000, VAR * mc->A_11/1000);.
mec->B k = gauss(mc->BI / 1000, VAR * mc->BII 1000); N
mee = mee->next; mu = mui-> next;

mei =mee; mie = mui;
for (j 0;. j < MESOSIZE; j ++)

( if(i !=j)--

mei->next =connect alloco; mie->next =connect allocO;
mei->home = mie->home = j;
mei->hoineid = 1; mie->homeid = -2;mei>ph-jk= pss~hiMANVAR* piNUAM
mei->phijk = gauss(phiMOEAN, VAR * phiMEAN);
mi->pjk = -Igauss(hMEAN, mei-phiME);
mei->v-jk = -1gauss(vMEAN, mei->pjk);
mei->vjk = gauss(vmB-AN, mi00e VA phijk);100)
mei->A-jk = gauss(mc->AEl /1000, VAR *mc->A_El /1000); ,

mie->Bjkr = gauss(mc->BIE /1000, VAR *mc->BE 1000);
mie->A-jk = gauss(mc->AB / 1000, VAR *mc->AB / 1000);

mci =mei->niext; mie =mie-> next;

Figure A. 6

66



initnunirso

unsigned int i, j, k. 1;
struct micro_connect *Mc, *connectaIOCO; pI

struct n-unit *mp, *mj;
int *p, counter, count;,
float gausso, get-andfO;
foro=0 i< MSLZE i++)

mp = matrixroottil;
for (j 0;, j < matrix-totaiNli]; j ++)

(if(getjandf() >= 0.35)
mpU].class = 1;

else mpUj].class = -1;

mpUo.status[O) = MICROSTART; MPU1.Statusli NUMCROSTART;

mpO]Lhesh = gauss(VMEAN, VAR * VMEAN) /1000;
mpU.pat = mc = connect.allocO;

count =0;

for(k0; k < MBSOSIZE; k++)

tmc->next = connectallocO;
mc.>home = k; mc->homeid = -1;
mc->vhijk = gauss(MAN, VAR-pphijk);

mc->phjk = gauss(phiEAN VAR * phiMEAN)
if(mpu).class ==1)

mc-A-j =gauss(mes-pntr~matrix.parnt(iIF->A-EE /1000,

VAR * mes-pntr(matrix-pareltil]>A-F-EE / moo0); j.

mnc->B-jk = gauss(mes-pntr~matrix-pareflill>B- EE / l0ow,

VAR * mes5 pntr~matrx.parentilh>B-EE / moo0);

else

mc->Ajk =gusmsptmarxprnil>A I 1000,

VAR * mes...pnrr(matrix.pareflt[illh>A lIE / 1000);

mc->Bjk = gauss(mesptrmatrix.parent~illh>B-JEI"
1000, VAR mespntrfmarix.parenfl)->BIE 10

count += 1; mc =mc-,flext;

r
Figure A.7 

I
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for(k =0; k < MESOSLZE; k++)

mc->next =connect.allocO;
mc.>home = k, mc->homeid = -2;
mc.>phi..jk z:gauss(phiMlEAN, VAR * phiNMA;
mc.>vjk = -I1 gauss(vMEAN, mc->phuk);
if(mpuj].clas =1

mc->Ajk = gauss(rnes..pntrmatrix.parenfl i->AEI/ 1000.
VAR * meS...pnrfiiatrix.pareflt(i]h.>A-EI / 1000);

mc->Bjk = gauss(mes ncr(maurix.p~wenfliI->B El / 1000,

VAR * mes..jntr(matrix.pareflL(iIF>B-EI / 1000);

else

mc->Ajk = gauss(mes.4,ftr(matflx.pareflt~iIV>A-II / 1000,
VAR * mes...pntr(matrix.pareft(iIP>Af / 1000);

mc->Bjk = gauss(mes jcr~matrix.pareflt~iif->B-II / 1000.
VAR * mes4,ntr(matrix.parenT[illh>B-III 1000);

count += 1; mc -mc->net

for(I =0; 1 < MSIZE; 1-s-i)

counter = temp-array(matrix.tota[N(il);
p - micarray;,
for(k = 0; k < counter; k++-i)

I
mc->next = connect~alloco;
mc->home = P ;
mc->homeid 1 ; mc =mc->next;

mc->next =NIL;

forj =0; j < matrix.totalNWi; j-i-.)

mc = mpo~l.path;

b ~for(Ic = 0; k < count; k++)
mc = mc->next;

while(mc->next ! NIL)

Figure A.8
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mc->ph~jk =gauss(phiMEAN, VAR *phiMEAN);%

mc->vjk = gauss(vMBAN, mc->phijk);
mj = matrixmroLmc->homeidl;
if(mj(mc->home].class = -1)

mc->vjk = -mc->vjk;
if(mpOj].class ==1)

if(mj[mc->homel -class =- 1)
I.4%

mc->Ajk = gauss(mes..pntr(macrix.parent[i]]->AEE /1000,
VAR * mes-.pntr[marx.parenti]->AEE / 1000);

mc->Bjk = gauss(mes..pntrfmatrix.parentilj->B-EE / 1000,
VAR * mes..pntr[marix.parenti]->B-EE / 1000);

else

mc->Ajk = gauss(mes..pncrfmatrix.parenti]->A...El / 1000,
VAR *mes..pntrfmatrix.parentfi]]->A-EI / 1000):

mc->Bjk = gauss(mes-,pmcrfmatrix.parenti]->B-EI / 1000,
VAR * mespnufmarix.parentfi]1->B .El / 1000);

else
if(mj[mc->home].class == 1)

(mc->A-jk = gauss(mes-.pntr~matrix.parent(ilI.>AJIE / 1000,
VAR * mes..pntr[matrix.parenti]]->AjBE / 1000);

mc->Bjk = gauss(mes-pnufmatrix.parent[iI]->BJIE / 1000,
VAR * mes-.pntrfmatrix.parent~i]]->BIE / 1000);

else

mfc->Ajk = gauss(mes...pntr~matrix.parentiI->AJlI / 1000,
VAR 0mes-.pnrmatix.parentij]->AJI / 1000);

mc->Bjk = gauss(mes4,crfmatrx.parentfil]->BJJI / 1000,
VAR *mes..pntr[matrix.parentqi]]->BI 11 1000);

mc =mc->next;

Figure A.9 4

69



-A-?IYVVVV -i 41'

micro-updateO
I
struct micrOoonnect *mc, *mP;
struct n-unit. mr, ml, *mm, *mj;
unsigned int i. j, t;
double expO, sqrtO;
float A-jk. summ_two, summ-one. F~j, p...sgmaj, weight, get-randfO;
t = toggle;
for(i0; i < MSI:ZE;i++)

{ mm =matixrootfi];

for( j o ; j < matrix.totalN(i]; j++)
( mc = mmoW.path;
surmmofle = surm-two = 0.0;
while(mc->flext ! = NIL)

(if(mc.>homeid < 0)
(if(mc.>homeid = 1)

( weight =mes..pntr[mc->home->iN-E /10',
if(weight <= 0.0)

weight = 1;
mr= mes..pntrmc->home]->Etypical;

% else
( weight = mes-pnr~mc->home]->NJ / 10;
if(weight <= 0.0)

weight= 1;
mr = mespntr~mc->home.>ltypical;

else
( mj =marixroot(mc->homeidj;

weight =1;
nir = mj[mc-Ao'oc;

Ajk =weight * (.5 * mc->Ajk * (mr.statuslltl + 1
+ mc->Bjk);

summ~one += (Ajk *mc->vjk);.

summjtwo += Ajk * ((mc->vjc*mc->vjk) +

39(mc->phi-jk 
*mc->phi-jk));

mc =mc->next;

Figure A. 10
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=(mmUj].thresh - surnm..oe
sqrt(PI * summ-twO);

p...sigrnaj = (exp(- 1 mmnU].statusft]
Fj)) / (exp(F..j) + exp(- I*-P

if(p...sigmaj > geLrAndfo)
mmul.status(l] = 1;

else
mmU].status[l] = -1;

for( j =0; j < MESOS IZE; j+'+)
summone = summ-.two = 0.0;

mp = mes...pntrUj]->Etypical-path;
while(mp->next != NIL)

(if(mc->homeid -)
[ weight = mes..pntr(mc->homel->N.E /10;,
if(weight <-- 0.0)

weigh= 1;
mi = mespntr[mc->home]->Etypical;

else
(weight = mes-pjntrllmc->homel->NJ / 10;
if(weight <= 0.0)

weight = 1;
ml = mes..pntr~mc->home]->Nrypical;

A~jk aweight * (.5 * mp->A-jk * (ml.status~t]
+ 1) +mp->B-jk);

sumnione +=(Ajk *mp->v-jk);
summ_;wo -aAjk *((mp->v-jk * mp->vjk) +4

(mp..>phi-jk * mp->phijk));
mp = mp->next;

=j (mes..pntrfjl->Etypical.thresh - summ-one)/
sqrt(PI * summ-two);

p...sigmaj = (exp(.1 * mes...pntrojV>Etypical.statusr]
F-j)) / (exp(F-j) + exp(-lI F-j));

if(p..sigmaj > get..raxdfo)
mes-.pntrU]->Etypical.statuslj = 1:

else '

mes~pntU1j->Etypica.satus(1] = -1;
mp = mes..pntroj)->Itypical.path;

while(mp->next aNIL)

Figure A. 11
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{if(mc->homeid= )
(weight =mes-pntr~mc>homel ->N E /10;

mi = mes-pntrfmc.>homeV->Etypical

ele weight = mespntr[mc->homei>NI /10;
ml mes-.pntr~mc>homeCF>ItypicaL

Ajk =weight * (.5 * mp->Ak(mstusl
+4 1) + mp->Bjk);

summ-one += (Ajk mp->v-jk);
sum.3w0 += A-jk *((mp->vjk *mp->vjk) +

(mp->phijk - mp->phijk));
mp4 = mil->next; 

I

E~j= (mes.4,ntfjl->ItypicaLthresh - summjmne)/
sqrt(PI * surm..two);

p...sigmaj = (exp(- 1 -ms.pntrU)->Itypica.status~tI
Fj) / (exp(F.j + exp(- I * F)

if(p..sigmaj > getrjandfO)

mes-.pntro)->Itypical-status[13 = 1;

ele mes-pntrU>ItYPicalStaIusUI] = -1; 4.

Figure, A. 12
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float get..L(num, ME, MI)
int nun, MIE, NG;

struct micro..column *mc;
float F3.., Fj, g_.E, g-1, g-.EE, g-II, g. J...E, J-1 V_E, V_I, L, DL;
int flagM, N, tog, M-.dotE, MdotI, ME, MJI;
unsigned int t;
double cosho, tanho, sqrto;
t= toggle;
if (t ==0)

tog=1
else tog = 0;
JE=J_1 =0;
mc =mes-rntr~num];

FE = (mc-> VE - (nic->aEE *mc->v_E *mc->N_E +.
mc->a..EI * mc->vI * m-NI
0.5 * (mc->A_.EE * mc->vE * mc->MsupEir] +
mc->AEl * mc->vI mc->Msupl[t]))
/ sqrt(PI * (((mc->vE *mc->v_.E) + (mc->phi..E *mc->phiE))

(mc->A_EE * mc->NE + 0.5 * mc->A EE * mc->MsupE[t)) +
((mc->vj * mc->VjI) + (mc->phijI * mc->phijl))*
(mc->a_El *mc->N_I + 0.5 *mc->A3.1 * mc->Msupl[t])));

F_1= (mc->V~j - (mc->aLE *mc->vE * mc->NE +
mc->a~jI * mc->vI *mc->NJI) -

0.5 * (mc->AIE *mc->v -E * mc->MsupE[t] +
mc->AH * mc->v I * mc->Msuplftl))
Isqrt(PI * (((mc->vE * mc->vE) + (mc.>phi .E' mc->phL-E))
(mc->a_IE *mc->N_E + 0.5 * mc->A..IE * mc->MsupE~t])
((mc->vj * mc->vjl) + (mc->phijI mc->phi-1)) *

(mc->a_UJ mc->N_I + 0.5 * mc->AII * mc->Msupl(t])));
=_ (mc->MsupEftI + mc->NE * tanh(F..E)) / -TAU;

g I = (mc->Msupl~t] + mc->N I * tanh(F 1)) I -AU;
gEE = 1 / TAU * mc->NE 1 / (cosh(F...) *cosh(F...));

g-H = 1 / TAU *mc->NJl I / (cosh(FJ) *cosh (F-1));

M-dotE =(ME - mc->MsupE~tI) / DELTA&T;
M-dod = (M mc->Msupl(t]) /DELTAT;

_E =0;

Figure A. 13r
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mc->QE' (((mc->MsupE~tI -

mc-acast->MsuPE~itI)
(mc->MsuPE[t] - mc-,east->MsupEtlD) +

((mc->MsupEitl - mc->west->MsupEitD *

(mc->MsupEt - mc->west->MsupEl])) +

((mc->MsupEitI - mc->north->MsiipE II')*
(mc->MsupE[tl - mc->north->MsupE[t])) +

((mc->MsupE~it] - mc->south->MsupElI]) * '1

(mc->MsupE~tI - mc->south->MsupE[tI)));
V_1 =0;
mc->CJI * (((mc->Msupl[tI -

mc->east->MsupII V)
(mc->MsupI[tI - rnc->east->MsupI~tI)) +

((mc->MsupI~tI - mc->west->MsupI~tI) *

(mc->MsupI~tI - mc->west->MsupI[t])) +

((mc->MsupIlt - mc->north->MsupI(tI)
(mc->Msup(L] - mc->north->Msuplitl)) +

((mc->Msupl[t] - mc->south->Msupl~tI)*
(mc->MsupI~tI - mc->south->Nlsupl[t])));
if(num =0)

M dotE = 0;
M_dodl = 0;
V_-E=0; I

V-1 = 0;

N = mc->N E + mc->N 1;

L = ((M..doffE - gE) * (M..dotE - LE) /(2 *N *gEE)

" (mc->MsupE~tI *LJ / (2 * N * TAU)) - V...E)
" ((M-dot - g-1) * (M...dod - g-1) /1(2* N * gjI)
" (mc->Msupl[tI J LI1 (2 *N *TAU)) - VI);

return;

Figure A. 14
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APPENDIX B: SOURCE CODE FOR THE MESOSCOPIC SMNC

Having verified the concept of the mesoscopic scale in Chapter IV, the extra code

and computing resources required by the microscopic neural become an unnecessary

burden and therefore have been replaced. This results in a powerful program of less than

400 lines of code. Appendix B contains the code segments for the SMNC as written for

the mesoscopic single variable case used to reproduce the bifurcation graphics in Chapter

IV. Because of the brevity of the code, it is not broken down into modules as was done

*. with the neocortical SMNC discussed in Appendix A.

The mesoscopic SMNC takes full advantage of the scaling algorithms discussed

in Chapters IV and V. This code, in two versions, was applied to nonlinear probability

distributions. Employing a single variable, the mesoscopic neural computer was used as

a means of verification. A two variable version was also employed to test the concept of

the mesoscopic scale before applying it to the brain. This test used the Wehner and

Wolfer bifurcation problem and applied it to two dimensions. That is, the same variables

were used for each dimension in X-Y pairs. The results for this test have not been

included due to the poor resolution obtained for initial runs and the lack of sufficient time

to perfect the code. The multi-dimensional Lagrangian case has, however, been

perfected by Professor Ingber, working in collaboration with this author and fellow

researcher CDR J. Connell, at the Naval Postgraduate School. Figures B. 1 through B.6

contain a complete listing of the bifurcation verification code using the mesoscopic

SMNC.
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#include <stdio.h>
#include <math.h>
#include <string.h>
#define INTMAX 2147483647
#define PI 3.14159265359
#define DELTAT 0.5
#define NUM 20
#define NUMI NUM + I
#define WARMUP 1000
#define N 50000
#define V 10.0
#define H 6.0
#define X_INCHES 1.66666667
#define YNCHES 533.33333333
#define RESOLUTION 1.0
#define SCALE 60.0
#define TEMP 1.0
#define CAUCHY 30.0
#define INIT 0.0
#define SEED 6969.0
float seed, temp;
double logo, tanho, sqrto, sin0, tan0, cos0, cosho, expo;
struct master

float q, K, Q;

struct master trajectorylNUM I];

Figure B. 1

This figure contains the declarations and constants for the mesoscopic SMNC. It

also makes the declaration for a structure to contain the drift and diffusion variables used

in calculating the Lagrangian values.
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float get...randfO

double x;
x = 16870.0* seed;
seed = x - 2147483647.0 *floor (x /2147483647.0);
return (seed / 2147483648.0);

float cauchy(median, temp)
float median, temp;

float durn 1, dum2, ratio;
ratio = 2.0;
while (ratio > 1.0)

duni = 2.0 1 (get-randfO - 0.5);
dum2 = get-randfO;
rato =dum I * dun I + dum2 *dum2;

return(temp *(dumi I dum2) + median); -

float get...K(q)
float q;

return(tanh(q));

float geLQ(l)
float q;

(u Ii a . , .w - .
| i

return(1 .0),

Figure B.2

4,

This page contains several procedures used during the initialization and update

phases. The routine get-..randf() returns a pseudo random floating point number. Cauchy.4

is used to return a Cauchy distributed variant centered about "median" with a variance of

% %
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double x; v
x = 1870." se~d;4.
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unsigned int i;
trajctoryiOl.q = IiT;
trajectoryllOl.K = getK(trajctOrYfOI.q)

* rajectory[OI.Q = getLQ~rajectoryII0l.cO;
for(i = 1; i <NUM1; i++)

-h trajectoryil.q 2 I~T;
trajectoryW.K = get.K(trajectoriYiI.cO;
trajectorylli].Q =getQ(trajectoryti1.q);

I
for(i = 0; i < WARMIJP* i++)

updateO;

float get-..l~q, q2, K, Q)
float q I, q2, K, Q;

remur((ql - q2 - (K * DELTA3:) (qI - q2 - (KS DELTAJ))/
(2.0 *Q * DELTA.Y))*:

Figure B.3

This figure contains the initialization routine, inito, and a function for calculating

-. the Lagrangian, get-L. Note that for the single variable case, the starting points are

* initialized to zero.

78

% %



updateO

unsigned inc i; inc flag..q;
float DL, L I, L2, L3, IA, ciprime, tesc..K, tesLQ, x, y, cauch;
cauch =CAUCHY;

for (i =1; i < NUM; i++)

Li = geLL(trajcctory~iI.q. trajectory (i- I].q,
trajeccorylli-1iI.K, trajectoryli-1II.Q);

L2 = getLtrajectoryli+liI.q, trajectory[ii~q,
trajectory (ij.K, trajectory [i.Q);

q..prime = cauchy(trajectorylq, temp);
while((cu4,rime <= -cauch) 11 (q...prme > cauch))

q..prime = cauchy(trajeccorylli].i, temp);
testK = gec..K(urime);
tesL-Q = gec..Q(q..prime);
L3 = get...L(qpriine, irajectoryfi-IJ.q,

crajeccory~i- u.K. trajectoiyfi-iI.Q);
LA - geL..L(trajecoryfi+i].q, q-pnime,

test-K, cesc..Q);
DL = LA + L3 - Li - L2 + (Iog(tesc._Q /trajeccory [i.Q) /2);
flag-q =0-
if(DL < -25.0)

x= 1.0;
y =0.0;

else if(DL > 25.0)

x =0.0;

y= 1.0;

else

x =exp(-L)L);

y =get-randfo; 5

if(x > Y)

if(fiag lq = 1

trajectory~i].q =q-prime;

trajectory[iII.K = estK;F rajectorywi.Q = esc...Q;

L2 =get..L(trajeccory(i+1I.q, trajectory[iII.q, trajectory (i].K, uajectory~i].Q);
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i = NUM;
Li = getL(trajecwryil.q, trajectary[i-1].q,

trajectory(i- II.K, trajectory[i-1].Q);
qprime = cauchy(trajectory(i].q, temp);
while((qprime <= -cauch) II (q.prime > cauch))

q..prime = cauchy(trajectory[i].q, temp);
test_K = getK(qprime);
tesLQ = getQ(qpime);
L3 = get_L(qprime, trajectoryli-1].q,

trajectoryi-I.K., trajectory[i-1].Q);
DL = L3- L1;
flag.q = 0;
if(DL < -25.0)

x 1.0;
y =0.0;

else if(DL > 25.0)
{
x = 0.0;
y= 1.0;

else

x f exp(-DL);

y = getrandfO;

"" if(x > y)
flag...q = 1;

if(flagq = 1)
{
trajectory(i].q = q..prime;
trajectory[i].K = test_K;
trajectoryi].Q = testQ;
}

Figure B.5

The previous two figures contain the listing for the update procedure. The code

on Figure B.4 updates trajectories for all but the final case. The code on Figure B.5

updates only the final trajectory.
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main 0

unsigned int i, j;
inc hist[601;
float n-binf601. i-scale. ratio, factor, height;
seed =SEED;

temnp =TEMP,

ratio =YINCHES / XJINCHES;
q...scale =(1.0 /RESOLUTION) *(1.0/H);

factor =q-scale * V * ratio;
inito;
for (i = 0, i < N; i++)

if(i % 1000 ==O0)
initO;

update0;
hist[30 + (int)(trajectory(NUM.q)I += 1;

printf(");
printfC' T
for(i = 0; i < (0.0375 * factor); i+.+)

printf(" )
printf("I");
for(i = 0; i < (0.0375 * factor) - 1; i++)

printfC'")
printf("i");
princffCO);
for(i =0; i < (SCALE /RESOLUTION); i ++)

printf("63d", i - 30);
n-bin~i] = (float)(histfi] / (float)N);
height = ajin~iI * factor /RESOLUTION;
forfj = 0; j < height; j++)

printfC'")
printf("x");

Figure B.6

Figure B.6 contains code for the main program and includes a graphing routine

for the results which are displayed in Chapter VI.
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APPENDIX C: MONTE CARLO CALCULATIONS

One's first encounter with path integrals may also be his last. With the advent of

the computer, however, the approach often taken to path integrals and similar non-linear

problems is through the use of Monte Carlo methods. Although the spinning of a roulette

wheel has been replaced by the random number generator, the simulation of a random

process is still referred to as a Monte Carlo calculation.

An example used by Landau [33] in equilibrium statistical mechanics may

demonstrate this point. Landau used the case of a heat reservoir in which the probability

P(a) that the system is in the state a can be expressed by the following:

-E(a)

-E(a) (C. 1)
e Ur

a

where k is Boltzmann's constant, T is the temperature of the reservoir, and E(a) is the

energy for some state a. It should be noted that Equation B. 1 applies no matter what the

. sy stem state was before it made contact with the heat reservoir. Equation B. 1 shows the

random nature of interactions of the environment with the heat reservoir. Just as there

may be many kinds of reservoirs in nature, there also may be many types of computer

programs to simulate them.

Cauchy-driven Monte Carlo techniques are used by the SMNC to allow for

stochastic changes within the system. These occur during the initialization of the system

variables as well as during the calculations of the trajectories of the MG variables

through time. In an attempt to alleviate some of the problems the standard Monte Carlo

techniques have with multi-minima Lagrangians (finding only local minima), the SMNC
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also makes use of a Cauchy distribution to generate test points which will occasionally

lie outside a relative minima. This allows the SMNC to sample more points within its

environment, thereby giving it a greater possibility of finding multiple minima.

In regenerating the path-integral solutions to the Fokker-Planck equations done

by Wehner and Wolfer [30], the following Lagrangian was calculated in the prepoint

discretization.

L() = [(q (t+dt)-g (t))/dt - K(t)]2  (C.2)

2Q (t)

The associated probability distribution is found from Equation B.3.

p (t) = [2nQ (t-dt)dt ]-1 2e - t  (C.3)

For this problem, time is discretized, but not necessarily q, the discretization of which

depends on the system modeled. For the Wehner and Wolfer problem, Q(t) = 1 for all

time and q(0) = 0. A Cauchy random number generator is used to supply test values of

q(t) for times greater than 0.

The Boltzmann test uses a comparison between a uniform random number

between 0 and 1, and B, which is calculated by Equation B.4.

B =e- DI (C.4)

where

DL = I(Ln.e -Lo.d) (C.5)
L t.5

and where the sum is taken over all L's affected by changes in the points generated by

the Cauchy distribution. Here, new and old refer to entire trajectories.
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L(t) includes the "temporal" nearest-neighbor interactions (which are also

necessary for the neocortical problem) such that

l(sdt) = [q ((s + l)dt) - q (s )dt] (C.6)dt

where s ranges from 0 to n, and the the final time t is equal to (n + 1) times dt (both s

and n are integers). This implies that only the values of L at neighboring times are

needed to calculate DL. The SMNC accomplishes this through the generation of new

trajectories by changing one q value at a time. The likely trajectory this produces is then

accepted or rejected according to the Boltzmann test.

This procedure is repeated as often as necessary to produce a sufficient number of

trajectories for the system to react to the Lagrangian. It was found in the case of the

Wehner and Wolfer data that after as few as 100 trajectories, the system was able to

"feel" all its temporal points. In the multi-variable, multi-spatial-cell cases (such as the

brain or combat terrain) more trajectories are needed to allow all of the variables at all

spatial-temporal points to interact. Even for the many variable case, however, the

number of changes needed to be made to the code is small when compared to other

statistical mechanical methods.
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